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A novel approach to fused 1,2,4-triazines by
intramolecular cyclization of 1,2-diaza-1,3-butadienes
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Abstract—3-Allyl- and 3-prop-1-ynylsulfanyl-2-arylazo-3-cycloalkylamino-acrylonitriles undergo cyclization under mild conditions
to afford the novel heterocyclic systems 1,4,6,7,8,8a-hexahydropyrrolo[2,1-c][1,2,4]-triazine-4-thione, 1,4,6,7,9,9a-hexahydro-
[1,4]oxazino[3,4-c][1,2,4]triazine and 1,6,7,8,9,9a-hexahydro-4H-pyrido[2,1-c][1,2,4]triazine via a number of consecutive pericyclic
reactions.
� 2007 Elsevier Ltd. All rights reserved.
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Scheme 1.
Recently, we have shown that 3-methylsulfanyl-2-
arylazo-3-pyrrolidine-1-yl)acrylonitriles 1a–c generated
azomethine ylides under mild conditions.1 The latter
reacted by a 1,3-dipolar cycloaddition mechanism with
N-substituted maleimides to form 4-methylene pyrroliz-
idines 3 and 4 (Scheme 1).

Herein, we report a novel intramolecular reaction of 3-
alkylsulfanyl-2-arylazo-3-cycloalkylamino-acrylonitriles
leading to 2,3,4,5-tetrahydro-[1,2,4]-triazines fused to
pyrrolidine, piperidine, and morpholine rings. The start-
ing allyl- and propargylsulfanyl-2-arylazo-3-(pyrrolidin-
1-yl, piperidin-1-yl and morpholin-4-yl)acrylonitriles 5
and 6 were prepared by the alkylation of 2-arylhydr-
azono-3-cycloalkylamino-3-thioxopropionitriles with an
excess of allyl- and propargyl bromides in the presence
of KOH in 85–95% yields.

Surprisingly, it was found that on standing in CHCl3
compounds 5 and 6 were gradually transformed into
new products. We observed this process in benzene, ace-
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tone and acetonitrile at room and higher temperatures
while optimal conditions involved heating of com-
pounds 5 or 6 in acetonitrile at 40 �C.2 Column
chromatography of the final reaction mixtures allowed
us to isolate pure 1-aryl-4-thioxo-[1,2,4]-triazine-3-
carbonitriles 7a–f as the main products in moderate
yields (Scheme 2, Table 1).

The structural determination of compounds 7 was
achieved from their analytical and spectral data. 1H
NMR spectra of products 7a–f were considerably differ-
ent in comparison to those of starting materials 5 and 6.3

There were no signals of protons due to the SR groups
in the spectra of 7. The number of protons of the
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Figure 1. X-ray structures of 7d and 7e.
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cycloalkylamine had decreased by one. The signals of
the two protons of the cycloalkylamine were shifted
downfield significantly in comparison with the starting
materials. A doublet of doublets at d 5.58 ppm
(J = 8.2, 5.3 Hz) for 7a–d and d 6.40 (J = 10.4, 2.9 Hz)
for 7e–f corresponding to the proton on the bridging
carbon of the heterocyclic system and a complex multi-
plet due to the remaining protons of the cyclic amino
ring were registered in the spectra of compounds 7. A
strong shift (around 20 ppm) of the signal of the carbon
connected to the sulfur atom, the small shifts of the sig-
nals of the aromatic carbon atoms (2–3 ppm), and
strong downfield shifts for the signals of the a- and b-
carbons of the cycloalkylamine were the main features
of the 13C NMR spectra of compounds 7 in comparison
with 5 and 6. Confirmation of the structures of com-
pounds 7 was made on the basis of 2D HMBC and
HSQC experiments. The assigned structures were fur-
ther validated by single-crystal X-ray analysis (Fig. 1).4

It is worth noting that thioamides 8a–f were isolated as
minor products of side chain dealkylation in all the
transformations of thioimidates 5 and 6 to 7. The mech-
anism of the transformation of 3-allyl- and 3-prop-1-
ynylsulfanyl-2-arylazo-3-cycloalkylamino-acrylonitriles
5 or 6 to fused 1,2,4-triazines 7 can be described in anal-
ogy to cyclizations relying on the so-called ‘tert-amino
effect’ (Scheme 3) as compounds 5 and 6 contain both
tert-amino functions and a conjugated system.5
Table 1. Investigation of the transformation of 3-allyl- and 3-prop-1-ynylsu

Entry Substrate Ar X R

1 5a 4-EtO2CC6H4 CH2 Al
2 6a 4-EtO2CC6H4 CH2 Pr
3 5b 4-ClC6H4 CH2 Al
4 6b 4-ClC6H4 CH2 Pr
5 5c C6H5 CH2 Al
6 6c C6H5 CH2 Pr
7 5d 4-MeOC6H4 CH2 Al
8b 5d 4-MeOC6H4 CH2 Al
9c 5d 4-MeOC6H4 CH2 Al

10d 5d 4-MeOC6H4 CH2 Al
11 6d 4-MeOC6H4 CH2 Pr
12b 6d 4-MeOC6H4 CH2 Pr
13 6e C6H5 OCH2 Pr
14 6f C6H5 (CH2)2 Pr

a Isolated yields.
b Reaction carried out under argon.
c Reaction carried out with toluene-4-thiol.
d Reaction carried out with sulfur.
The cyclization according to this mechanism (Scheme 3)
is accomplished by dealkylation of intermediate prod-
ucts 9 to form the final compounds 7. As dry solvents
were used and because the yields of the final products
did not diminish when the reaction was carried out un-
der argon (entries 8 and 12, Table 1) we conclude that
the last step of the reaction may involve elimination of
propene (for compounds 5) or propyne (for compounds
6) from intermediate 9 (formed via thio-Claisen rear-
rangement) rather than an oxidative reaction with the
formation of propen(propyn)ols. Moreover, the use of
sulfur as an oxidant did not lead to a change in the yield
of the reaction (entry 10, Table 1). The formation of
lfanyl-2-arylazo-3-cycloalkylamino-1-yl-acrylonitriles 5 and 6

Time (h) Yielda 7 (%) Yielda 8 (%)

lyl 40 51 3
opargyl 15 47 6
lyl 40 68 5
opargyl 9 60 12
lyl 60 55 6
opargyl 10 65 7
lyl 40 55 17
lyl 40 70 7
lyl 40 55 17
lyl 40 53 11
opargyl 10 60 11
opargyl 10 53 15
opargyl 25 40 10
opargyl 20 37 10
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Scheme 3. The mechanism of triazine ring construction from 5 and 6

according to the tert-amino effect.
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propene as the principal gas phase product of the reac-
tion was confirmed by a GC-MS experiment.6

However, thio-Claisen rearrangements normally take
place under more vigorous conditions and the rear-
rangement of 5-alkylsulfanyl-1,2,4-triazine-3-carboni-
trile 9 should be hampered by the presence of a cyano
group at position 3.7

An alternative mechanism involves the elimination of
propene (propyne in the case of compounds 6) to afford
intermediate A, containing a conjugated hetero-hexatri-
ene system (Scheme 4). The latter undergoes a 6p-elec-
trocyclic reaction to furnish final product 7. The
allyl(propargyl)thio group along with active a-protons
makes 5 and 6 well suited for the pericyclic group trans-
fer reactions 8 to final products 7 by elimination of pro-
pene(propyne) or via intermediate allyl(propargyl)
amination (via structure A). A radical mechanism was
excluded because there were no new products detected
when the reaction was carried out in the presence of
toluene-4-thiol (entry 9, Table 1).

The main feature of the reported reaction is elimination
of propene (propyne in the case of propargyl derivatives
6) and the formation of a new C–N bond leading to
novel 2,3,4,5-tetrahydro-[1,2,4]-triazine-5-thiones 7a–f.
Piperidine and morpholine derivatives 7e and f are novel
heterocyclic systems.

It is worth mentioning that annulated 1,2,4-triazines are
present as important core structures in many biologi-
cally active compounds, both naturally occurring and
synthetic.9 Various condensed 1,2,4-triazines have found
applications as pharmaceuticals, herbicides, pesticides,
and dyes. For example, pyrrolo[2,1-f][1,2,4]triazines
demonstrate inhibitory effects on the growth of a wide
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electrocyclization.
range of cancer cells.10 Some pyrrazolo[5,1-c][1,2,4]tri-
azines have acquired considerable importance because of
their remarkable antitumor and antifungal activities.11

Certain synthetic derivatives of imidazo[2,1-c][1,2,4]tri-
azin-4(1H)-ones have revealed a strong affinity for
tumor cells and have demonstrated antiproliferative
properties and anticancer and antibacterial activities.12

In conclusion, we have discovered a novel reaction,
which represents a new approach for the synthesis of
bicyclic tetrahydro-1,2,4-triazines.
Supplementary data

Supplementary data (copies of 1H and 13C spectra for
compounds 7). Supplementary data associated with this
article can be found, in the online version, at doi:
10.1016/j.tetlet.2007.10.140.
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